Preprint
UCRL-JC-143410

Challenges and
Opportunities in Using
Automatic Differentiation
with Object-Oriented
Toolkits for Scientific
Computing

P. Hovland, S. Lee, L. Mclnnes, B. Norris, B. Smith

This article was submitted to
U.S. Department of E _
e T OLERETY g st Sandia Workshop on Large-Scale PDE-Constrained
Lawrence QOptimization, Santa Fe, NM, April 4-6, 2001

Livermore
National
Laboratory

\ \\bj April 17, 2001

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This work was performed under the auspices of the United States Department of Energy by the
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http:/ /www.doc.gov /bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-mail: orders@ntis.fedworld.gov
Online ordering: http:/ /www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library
http:/ /www lInl.gov/tid /Library.html

http://www.doc.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

Challenges and Opportunities in Using
Automatic Differentiation with
Object-Oriented Toolkits for Scientific
Computing™*

Paul Hovland!, Steven Lee?, Lois McInnes!, Boyana Norris!, and Barry
Smith?

! Mathematics and Computer Science Division, Argonne National Laboratory,
9700 S. Cass Ave., Argonne, IL 60439-4844.

2 Center for Applied Scientific Computing, Lawrence Livermore National
Laboratory, Box 808, L-560, Livermore, CA 94551.

Abstract. The increased use of object-oriented toolkits in large-scale scientific
simulation presents new opportunities and challenges for the use of automatic (or
algorithmic) differentiation (AD) techniques, especially in the context of optimiza-
tion. Because object-oriented toolkits use well-defined interfaces and data struc-
tures, there is potential for simplifying the AD process. Furthermore, derivative
computation can be improved by exploiting high-level information about numerical
and computational abstractions. However, challenges to the successful use of AD
with these toolkits also exist. Among the greatest challenges is balancing the desire
to limit the scope of the AD process with the desire to minimize the work required
of a user. We discuss our experiences in integrating AD with the PETSc, PVODE,
and TAO toolkits and our plans for future research and development in this area.

1 Introduction

The ever-increasing complexity of advanced computational science applica-
tions has led to an increase in the use of object-oriented software practices
in the development of scientific applications and toolkits. A good object-
oriented design increases productivity by allowing developers to focus on a
small component of a complex system. Furthermore, increased code reuse
provides justification for expending significant effort in the development of
highly optimized object-oriented toolkits.

Many high-performance numerical toolkits include components designed
to be combined with an application-specific nonlinear function. Examples in-
clude optimization components, nonlinear equation solvers, and differential-
algebraic equation solvers. Often the numerical methods implemented by
these components also require first and possibly second derivatives of the

*
The submitted manuscript has been created by the University of Chicago as Operator of Argonne National

Laboratory (“Argonne”) under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The
U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

2 P. Hovland, S. Lee, L. McInnes, B. Norris, B. Smith

function. Frequently, the toolkit is able to approximate these derivatives by
using finite differences; however, the convergence rate and robustness are
often improved if the derivatives are computed analytically.

Developing correct parallel code for computing the analytic derivatives
of a complicated nonlinear function can be an onerous task, especially when
second derivatives are required. An automated alternative such as automatic
differentiation (AD) [16,17] is therefore very attractive as a mechanism for
providing these analytic derivatives. Furthermore, because object-oriented
toolkits provide well-defined interfaces for nonlinear functions, the AD pro-
cess can potentially be simplified.

We examine the use of AD in conjunction with object-oriented numer-
ical toolkits. In particular, we describe the use of AD to provide first and,
where appropriate, second derivatives in conjunction with the Portable, Ex-
tensible Toolkit for Scientific Computing (PETSc), the Toolkit for Advanced
Optimization (TAQO), and a parallel ODE solver for computing sensitivities
(SensPVODE).

This paper is organized as follows. Section 2 provides a brief intoduction
to automatic differentiation. Section 3 introduces the toolkits considered in
this paper. Section 4 discusses the opportunities and challenges that arise in
using AD with these toolkits. Section 5 provides a synopsis of experimental
results. Section 6 summarizes our experiences and describes our expectations
for using AD in the context of PDE-constrained optimization.

2 Automatic Differentiation

Automatic, or algorithmic, differentiation is a technique for augmenting arbi-
trarily complex computer subprograms with instructions for the computation
of derivatives. The technique combines rules for analytically differentiating
the finite number of elemental functions in a programming language with the
chain rule of differential calculus.

The two principal approaches to implementing AD are operator over-
loading and compiler-based source transformation. Each method has its ad-
vantages and disadvantages [8]. There are also two basic modes of AD, the
forward mode and the reverse mode. The forward mode is particularly ap-
propriate when the number of independent variables is small or when a small
number of directional derivatives are required. The reverse mode is attrac-
tive when the number of dependent variables is small or when a Jacobian-
transpose-vector product is required. We focus on the source transformation
approach using the forward mode, but most of the issues discussed in this pa-
per are also applicable to the operator overloading approach and the reverse
mode. More details of how AD works and various methods for exploiting
chain rule associativity can be found in [17].

Figure 1 shows a simple example of the code generated by the ADIFOR [7]
source transformation tool for Fortran 77. While this example is not indica-
tive of the power of automatic differtiation, which is equally applicable to

Using Automatic Differentiation with Object-Oriented Toolkits 3

applications spanning thousands or millions of lines of code and utilizing
complex control structures, it does illustrate some important concepts.

10.0 * (x2-x1*x1) d2_b = dble(10.0)
1.0 - x1 d5_b (-d2_b) * x1 + (-d2_b) * x1
dogi_=1, g p_
g_y(g_i_, 1) = d5_b * g_x1(g_i_) +
+ d2_b * g_x2(g_i_)
enddo
y(1) = dble(10.0) * (x2 - x1 * x1)

y(1)
y(2)

dogi_ =1, gp_
g_y(g_i_, 2) =

enddo

y(2) = 1.0d0 - x1

-g_x1(g_i_)

Fig. 1. A simple example of automatic differentiation. The code on the right was
generated by the ADIFOR tool from the code fragment on the left.

Each scalar variable in the original program has associated with it a
derivative vector (sometimes generically referred to as a derivative object).
In the case of ADIFOR-generated code, this association is by name. For ex-
ample, the derivative vector associated with x1 is g_x1. In the case of an
AD tool for C, such as ADIC [10], association by name is not possible be-
cause of aliasing. Instead, association must be by address. ADIC accomplishes
this association by converting all floating-point variables to a new datatype,
DERIV_TYPE.

typedef struct {

double value;

double grad[ad_GRAD_MAX];
} DERIV_TYPE;

The value field carries the original floating-point value, while the grad field
contains the associated derivative vector.

The derivative vectors associated with independent variables are collec-
tively referred to as the seed matrix. The seed matrix can be initialized such
that upon completion of the computation the derivative vectors associated
with the dependent variables contain the Jacobian, a Jacobian-vector prod-
uct, or an arbitrary Jacobian-matrix product. For example, if in our simple
example we initialize g_x1 to [1.0,0.0] and g_x2 to [0.0,1.0], then g_y(i,j)
will contain dy;/0x;.

4 P. Hovland, S. Lee, L. McInnes, B. Norris, B. Smith

3 Toolkits

We have investigated the use of AD in conjunction with three object-oriented
toolkits for scientific computing: PETSc, TAO, and SensPVODE. All of these
toolkits employ an object-oriented design but are implemented in C. In the
next sections, we briefly describe these toolkits and the role derivatives play.

3.1 Portable, Extensible Toolkit for Scientific Computing

PETSc [2,3] is a suite of data structures and routines for the scalable solu-
tion of scientific applications modeled by partial differential equations. The
software integrates a hierarchy of components that range from low-level dis-
tributed data structures for vectors and matrices through high-level linear,
nonlinear, and timestepping solvers. The algorithmic source code is written
in high-level abstractions so that it can be easily understood and modified.
This approach promotes code reuse and flexibility and, in many cases, helps
to decouple issues of parallelism from algorithm choices.

PETSc provides a suite of nonlinear solvers that couple a Newton-based
method, offering the advantage of rapid convergence when an iterate is near
to a problem’s solution, with a line search, trust region, and pseudo-transient
continuation strategy to extend the radius of convergence of the Newton
techniques. The linearized systems are typically solved inexactly with precon-
ditioned Krylov methods. The basic Newton method requires the Jacobian
matrix, J = F'(u), of a nonlinear function F(u). Matrix-free Newton-Krylov
methods require Jacobian-vector products, F’'(u)v, and may require an ap-
proximate Jacobian for preconditioning.

PETSc also provides components for managing computations on struc-
tured grids, including hierarchies of grids for use in multigrid methods. Among
the functions provided by these components are generalized gather-scatter
operations for communicating ghost values, colorings for use in finite differ-
ence (and AD) Jacobian computations, and simplified facilities for mapping
between local and global indices.

3.2 Toolkit for Advanced Optimization

TAO [4,5] focuses on scalable optimization software, including nonlinear least
squares, unconstrained minimization, bound-constrained optimization, and
general nonlinear optimization. The TAO optimization algorithms use high-
level abstractions for matrices and vectors and emphasize the reuse of exter-
nal tools where appropriate, including support for using the linear algebra
components provided by PETSc and related tools.

Many of the algorithms employed by TAO require first and sometimes sec-
ond derivatives. For example, unconstrained minimization solvers that require
the gradient, f'(u), of an objective function, f(u), include a limited-memory
variable metric method and a conjugate gradient method, while solvers that

Using Automatic Differentiation with Object-Oriented Toolkits 5

require both the gradient, f'(u), and Hessian, f"(u), (or Hessian-vector prod-
ucts) include line search and trust region variants of Newton methods. In ad-
dition, algorithms for nonlinear least squares and constrained optimization
often require the Jacobian of the constraint functions.

3.3 SensPVODE

PVODE [11] is a high-performance ordinary differential equation solver for
the types of initial value problems (IVPs) that arise in large-scale computa-
tional simulations

y'(t) = f(t,y,p), y(to) =yo(p), y €RY, pe R™ (1)

Often, one wants to compute sensitivities with respect to certain parameters
p; in the IVP, s; = 0y/0p;. SensPVODE [21] is a variant of PVODE that
simultaneously solves the original ODE and the scaled sensitivity ODEs

oo Of 9 o)

aizla"'am' (2)

For the scaled sensitivity w;(t) = p;s:(t), typically p; equals p; or some other
nonzero constant with the same units as p;. Thus, SensPVODE requires the
derivatives g—iwi(t) +ﬁ,-g—1£.

4 Using Automatic Differentiation with
Object-Oriented Toolkits

Automatic differentiation can be used in conjunction with object-oriented
toolkits at many different levels. At the highest level, AD can be applied
to a toolkit to facilitate sensitivity analysis and optimization of models con-
structed with the toolkit. Another option is to use AD to provide the deriva-
tives required by the toolkit. To provide these derivatives, AD can be applied
directly to the parallel nonlinear function. Alternatively, AD can be applied
to the building blocks of the nonlinear function, such as the nonlinear func-
tion on a local subdomain or an element or vertex function. In the following
sections we consider some of the opportunities and the challenges in applying
AD at these various levels.

4.1 Toolkit Level

Applying AD to an object-oriented toolkit for scientific computing offers the
opportunity to compute derivatives (also called sensitivities) of scientific ap-
plications that use the toolkit. These derivatives can be used for sensitivity
analysis, to understand the sensitivity of the simulation results to uncer-
tainties in model parameters, or for optimization. Applying AD to a toolkit

6 P. Hovland, S. Lee, L. McInnes, B. Norris, B. Smith

also provides an opportunity to employ so-called computational differentia-
tion techniques exploiting high-level mathematical and algorithmic features.
Using computational differentiation techniques can also circumvent some of
the challenges that arise in applying AD to a toolkit, including the fact that
functions and derivatives may not converge at the same rate in an iterative
method and that certain numerical methods, including ODE solvers with
adaptive stepsize control, introduce feedback into a computation that may
seriously influence the derivatives.

One simple example of a computational differentiation technique arises in
the differentiation of a linear solver. Rather than differentiate through a pre-
conditioner and iterative Krylov solver, one can solve directly a linear system
with multiple right-hand sides, perhaps using block Krylov methods [6,24]
or a projection method [13]. We have conducted preliminary research in this
area in developing a differentiated version of PETSc [19]. A more sophisti-
cated example of computational differentiation, applicable to other types of
iterative solvers, is described elsewhere. We also note that the development
of SensPVODE may be interpreted as applying computational differentiation
techniques to the PVODE toolkit.

4.2 Parallel Nonlinear Function Level

Automatic differentiation is often not quite “automatic.” Often, the user of
an AD tool needs to specify the independent and dependent variables and
possibly initialize the seed matrix to indicate exactly which derivatives are
to be computed. The use of AD in conjunction with a numerical toolkit
promises to make full automation possible because of the use of well-defined
interfaces. For example, the nonlinear solver in PETSc requires a nonlinear
function adhering to the interface

int Function(SNES, Vec, Vec, void *);
while SensPVODE requires a function adhering to the interface
void function(integer, Real, N_Vector, N_Vector, void *);

In both cases, all of the required information regarding the derivatives to
be computed is known in advance, making automation of the AD process
possible. Other work [12,14,23] has also demonstrated the benefits of well-
defined interfaces for automating the AD process.

However, applying AD directly to the parallel nonlinear function required
by the toolkit is not without challenges. The function may include many
calls to toolkit support functions. Thus, differentiated versions of these func-
tions must be developed using automatic or computational differentiation
techniques. In many cases, these support functions are used for communi-
cating ghost values or performing similar problem setup or data movement
functions. Consequently, the differentiated versions of the functions may end

Using Automatic Differentiation with Object-Oriented Toolkits 7

up performing unnecessary work. Parallelism is also an issue. The nonlinear
function may use OpenMP or make calls to MPI functions, so the AD tool
must support the parallel programming paradigm being used. Furthermore,
the parameters to the function are likely parallel objects, as is the case with
the Vec and N_Vector objects in the examples above. Therefore, care must
be taken in the way seed matrices are initialized; additional communication
may also be required.

An important issue in the differentiation of application functions arises
from the benign-looking void * that appears as the final argument in both of
the examples above. This argument is used to pass a pointer to an application-
specific data structure that contains various data objects of use to the appli-
cation. Figure 2 contains several examples of these data structures.

As discussed earlier, in order to provide association by address between
variables and their derivative vectors, ADIC changes the datatypes of all
floating-point variables. The consequence for these application-specific data
structures is that if AD is naively applied, the type of several fields within
the data structure will be changed. Therefore, all application functions that
access the data structure, not just the nonlinear function, must be modified
to use the new datatypes.

An alternative is to use two data structures, one with the original datatypes
and one with the derivative datatypes, and to copy data between them. How-
ever, as the final example in Figure 2 illustrates, some care must be taken
with this approach. If the data structure includes workspace, such as the
uext field in this example, it may be inefficient to copy such unneeded data.
Furthermore, it is usually not possible to generate code automatically for
copying from one data structure to another. Therefore, at this point in our
work coupling ADIC with SensPVODE, we require the user to provide the
routine for copying data between the application-specific data structures and
their differentiated counterparts.

4.3 Local Subdomain Level

As alluded to in the preceding section, many parallel nonlinear functions fol-
low the pattern gather/scatter ghost values, compute function on local sub-
domain, and assemble/map function from local to global indices. Therefore,
an approach that avoids many of the complications associated with applying
AD to the full parallel nonlinear function is to apply AD only to the local
subdomain function, with manual modifications to the setup and assembly
phases. We have examined this approach in conjunction with PETSc and
TAO by manually extracting the local subdomain function, as illustrated in
Figure 3 and described in [1,9].

Recent work has examined how we can use the structured grid components
to simplify the process. The setup and assembly phases are essentially the
same for most nonlinear functions on a structured grid. Therefore, instead of
extracting the subdomain computation from the parallel nonlinear function,

8 P. Hovland, S. Lee, L. McInnes, B. Norris, B. Smith

typedef struct {

double param; /* test problem parameter */
int mx ,my; /* discretization in x, y directions */
Vec localX,localF; /* ghosted local vectors */
DA da; /* distributed array data structure */
int rank; /* processor rank */

} AppCtx;

typedef struct {

double lidvelocity,prandtl,grashof;
PetscTruth draw_contours;
} AppCtx;

typedef struct {
real om, dx, dy, q4;
real uext[NVARS* (MXSUB+2)* (MYSUB+2)];
integer my_pe, isubx, isuby, nvmxsub, nvmxsub2;
real *p;
real *pbar;
MPI_Comm comm;
} *UserData;

Fig. 2. Examples of application-specific data structures used in PETSc, TAO, and
SensPVODE applications.

we ask the user to provide only the subdomain function. Instead of providing
a nonlinear function with the interface

int Function(SNES, Vec, Vec, void *);

the user provides, for example, a local subdomain function with the interface

int LocalFormFunction2d(Field #**, Field **, Coords, void *);

where Coords contains information about the corners of the subdomain and
Field is a structure with a number of scalar fields corresponding to the
number of degrees of freedom at each vertex. The setup and assembly are
handled by the structured grid component. Given a differentiated version
of LocalFormFunction2d, the structured grid component can also perform
the necessary setup, including seed matrix intialization, and assembly of the
Jacobian. The setup and assembly phases use coloring [15] to reduce the
length of the derivative vectors to the stencil size times the number of degrees
of freedom. Future research will extend this work to Hessian computations
and unstructured meshes.

Using Automatic Differentiation with Object-Oriented Toolkits 9

Global-to-local
Local function Local function
computation computation
Parallel function
assembly
(Global-to-local \

o]
=}
(]
=
o
a
<
o
c
&

@
=}
Q
g
a
<
S
c
8

Local Jacobian Local Jacobian
! utation utation |
Parallel Jacobian
(™)) 20 vsrese 0 rersoane

=0 ADtools [EEE] AD-generated code

|

Fig. 3. Schematic diagram of the use of automatic differentiation tools to generate
the Jacobian routine for a nonlinear PDE computation.

4.4 Element or Vertex Function Level

A final option is to differentiate the element or vertex function and then
assemble the full Jacobian from the element (or vertex) Jacobians. This is
common practice in finite element computations, especially when the element
Jacobian is simple to derive by hand. For complex element or vertex func-
tions, or for higher-order derivatives, AD can be employed. This approach
eliminates the need for a matrix coloring, reduces the memory requirements,
and is easily extended to second and higher-order derivatives.

The principal impediment to this approach is that not all functions are
easily decomposed to this level. It may be computationally more efficient to
precompute fluxes for all of the edges/faces in the subdomain, then use these
fluxes in computing the element functions. Furthermore, boundary conditions
may introduce many special cases. It is computationally more efficient to
handle these special cases separately, then loop over the remaining elements,
than to test every element to determine whether a special case applies.

5 Experimental Results

We provide a brief synopsis of experimental results from the use of AD in
conjunction with the PETSc and SensPVODE toolkits. More detailed de-
scriptions of these and related experiments can be found in [1,19,20,22].

5.1 Toolkit Level

In [19] we describe research into the application of automatic and computa-
tional differentiation to PETSc. Here we briefly discuss some of the relevant
experimental results.

10 P. Hovland, S. Lee, L. McInnes, B. Norris, B. Smith

We have tested the differentiated version of PETSc, and in particular its
linear solver component, with an example involving the solution of a linear
system of equations A x = b where A is the 256 x 256 matrix whose sparsity
pattern corresponds to a five-point stencil discretization of a 16 x 16 compu-
tational domain. In all of the experiments, we have used a GMRES solver in
combination with an incomplete LU factorization preconditioner.

Execution Time, N=256, Num.Indep.=256
Error in Gradient Computation, N=256, Num.Indep.=256 7, T ™ ™

— DD
AD
6--- CD

&

IS

w

Norm of the Error
5
Execution Time (Seconds)

~

-

o

10° 10° 107 107 10° 107 10° 107 10° 10° 10° 10° 10”7 10°
Convergence Tolerance Convergence Tolerance

Fig. 4. Gradient error and execution time with varying convergence tolerances.

Figure 4 shows the accuracy and performance results for various conver-
gence tolerances. DD (for “divided differences”) designates finite difference
approximation, AD designates black-box automatic differentiation, and CD
stands for computational differentiation using successive linear solves on the
multiple right-hand sides. The termination condition of the Krylov subspace
methods is based on the relative decrease of the lo-norm of the residual and
the convergence tolerance value, which is plotted along the z-axis. The y-axis
of the accuracy plot is the lo-norm of the matrix representing the difference
between the derivatives produced by the various approaches and the actual
solution, Vo = A~'b, which we compute separately up to machine precision
for verification purposes. For the finite difference and AD approaches the
convergence tolerance refers to the convergence of z, whereas in the compu-
tational differentiation approach it refers to the convergence of Vz. In this
example, the computational differentiation approach exhibits significant per-
formance improvement over finite differences and AD.

5.2 Parallel Nonlinear Function Level

We applied SensPVODE to a simple test case, a two-species diurnal kinetics
advection-diffusion system in two space dimensions. The PDEs can be written
as

6Ci

Taeviasl (Kv@)@) R ent) (i=1,2),

Using Automatic Differentiation with Object-Oriented Toolkits 11

where the subscripts ¢ are used to distinguish the chemical species. The re-
action terms are given by

Ry (Cl, ca, t) = —qi1c1C3 — q2C1C2 + 2q3 (t)C3 + Q4(t)02 and

Ry(c1,¢2,t) = queics — gacica — qa(t)ca,

and K,(y) = Koe®/5. The scalar constants for this problem are K, =
40x107%, V =103, Ko = 1078, ¢ = 1.63 x 10716, g = 4.66 x 10~ 16, and
¢s = 3.7 x 10'6. The diurnal rate constants are

i (t) = el=%/sm @t for sinwt > 0,
() =0 for sinwt <0,

where i = 3 and 4, w = /43200, a; = 22.62, and a4 = 7.601. The time
interval of integration is [0, 86400], representing 24 hours measured in seconds.

The problem is posed on the square 0 < z < 20, 30 < y < 50 (all in
km), with homogeneous Neumann boundary conditions. The PDE system is
treated by central differences on a uniform 100 x 100 grid, with simple poly-
nomial initial profiles. See [21] for more details. For the purpose of sensitivity
analysis, we identify the following 8 parameters associated with this problem:
P1 = q1, P2 = q2, P3 = 3, p1 = a3, ps = a4, pe = Kp, pr =V, and pg = Kj.

We varied the number of sensitivities from 1 to 8 and compared the
use of AD with three finite difference methods to compute the derivatives
g—g’;wi(t) + I_Dig_zi- required by SensPVODE. In the combined central differ-
ence method, p; and y are perturbed simultaneously to obtain both terms in
the derivative expression. In the other finite difference methods, the terms
are approximated separately. See [21] for a complete description of the finite
difference strategies.

Figures 5 and 6 summarize our results on 16 nodes of a Linux cluster.
Each node in the cluster has two 550 MHz Pentium III processors (only one
processor per node was used) and Myrinet interconnect. AD shows a sig-
nificant performance advantage over the finite difference methods. However,
as Figure 6 illustrates, the performance improvements are due to a reduc-
tion in the number of timesteps required; the runtime per timestep actually
increases.

5.3 Local Subdomain Level

We used AD to provide the directional derivatives required by PETSc to
solve the steady-state, three-dimensional compressible Euler equations on
mapped, structured meshes using a second-order, Roe-type, finite-volume
discretization. We solved in parallel a nonlinear system, using matrix-free
Newton-Krylov-Schwarz algorithms with pseudo-transient continuation to
model transonic flow over an ONERA M6 airplane wing. See [18] for de-
tails about the problem formulation and algorithmic approach. The linearized

12 P. Hovland, S. Lee, L. McInnes, B. Norris, B. Smith

800

Il Automatic Differentiation

[Forward Differences

[Centered Differences (separate)
700 | I Centered Differences (combined)

o

=}

=)
T

Time (sec)
B
(=]
o
T

w

=}

=)
T

200 -

100 -

1 2 3 4 5 6 7
Number of Sensitivities

Fig. 5. Comparison of SensPVODE performance (total time to solution) for vari-
ous derivative computation strategies. Results are the average of three runs on 16
processors of a Linux cluster.

Newton correction equations were solved by using restarted GMRES precon-
ditioned with the restricted additive Schwarz method with one degree of
overlap.

As discussed in depth in [20] and summarized in Figure 7, our results
indicate that, for matrix-free Newton-Krylov methods, AD offers significantly
greater robustness and provides better algorithmic performance than do finite
difference approximations (FD). However, because the directional derivatives
required by a matrix-free method can be computed less expensively by FD
than by AD, AD does not always provide a performance advantage in terms of
runtime [20]. We are therefore investigating hybrid AD-FD strategies, which
combine the robustness of AD with the reduced cost of FD.

6 Conclusions and Expectations

The combination of AD and object-oriented toolkits has proven to be an ef-
fective instrument for scientific computing. The analytic derivatives of AD
enhance robustness and accelerate the convergence of Newton methods. The
well-defined interfaces and data encapsulation of object-oriented toolkits sim-
plify the AD process. There are many options as to the level at which AD
can be applied. Each level has its advantages and disadvantages.

AD offers great promise as a useful tool in PDE-constrained optimiza-
tion. Analytic derivatives are often necessary to ensure robust and efficient

Using Automatic Differentiation with Object-Oriented Toolkits 13

Time per Timestep (sec)

001f
1 I I] HHI
| u [| | | | I HHI
1 2 3 4 5 6 7 8 1 2 3 4 5

Number of Sensitivities Number of Sensitivities

Fig. 6. Number of timesteps and time per timestep for various derivative com-
putation strategies in SensPVODE. Results are the average of three runs on 16
processors of a Linux cluster.

convergence to the true minimum. For complex PDE-based simulations, how-
ever, developing analytic derivatives, especially second derivatives, by hand is
often intractible. Judicious use of AD can overcome these obstacles. Further-
more, the reverse mode of AD enables gradients, Jacobian-transpose-vector,
and Hessian-vector products to be computed at significantly lower cost than
is possible with finite difference approximations. The ability to compute ac-
curately and efficiently a full suite of first and second derivative matrices
and directional derivatives should facilitate the algorithmic experimentation
necessary for the advancement of PDE-constrained optimization. Thus, AD
can play an important role in advancing both the science and the practice of
PDE-constrained optimization.

Acknowledgments

The work of S. Lee was performed under the auspices of the U.S. Depart-
ment of Energy by University of California Lawrence Livermore National
Laboratory under contract No. W-7405-Eng-48. The other authors were sup-
ported by the Mathematical, Information, and Computational Sciences Di-
vision subprogram of the Office of Advanced Scientific Computing Research,
U.S. Department of Energy, under Contract W-31-109-Eng-38.

We thank Peter Brown, Alan Hindmarsh, David Keyes, Matt Knepley,
Jorge Moré, and Linda Petzold for informative discussions and Gail Pieper
for proofreading an early draft of this manuscript.

References
1. J. Abate, S. Benson, L. Grignon, P. Hovland, L. MclInnes, and B. Norris.

Integrating automatic differentiation with object-oriented toolkits for high-
performance scientific computing. Technical Report ANL/MCS-P820-0500,

14

P. Hovland, S. Lee, L. McInnes, B. Norris, B. Smith

Iterations for Convergence: Matrix-Free FD and AD

2 -
mesh dim: 98x18x18 FD, w=1.e-5
Newton / GMRES(K) / RASM(1) - - FD,w=1.e-6
or 4 processors - - FD,w=le-7
— AD
£
(=}
z
©
p=}
S
[- — - -———
S S
14
S
8 \
-
=) \
S \
-
\
\
\
\
_14 I I L L J
0 20 40 60 80 100

Iterations

Fig. 7. Algorithmic performance of automatic differentiation derivatives versus fi-
nite difference approximations

Mathematics and Computer Science Division, Argonne National Laboratory,
2000.

. S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management

of parallelism in object oriented numerical software libraries. In E. Arge, A. M.
Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific
Computing, pages 163-202. Birkhauser Press, 1997.

S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. PETSc 2.0 users
manual. Technical Report ANL-95/11 - Revision 2.0.28, Argonne National
Laboratory, March 2000. See http://www.mcs.anl.gov/petsc.

S. Benson, L. C. McInnes, and J. Moré. GPCG: A case study in the performance
and scalability of optimization algorithms. Technical Report ANL/MCS-P768-
0799, Mathematics and Computer Science Division, Argonne National Labora-
tory, 1999.

S. Benson, L. C. Mclnnes, and J. Moré. TAO users manual. Technical Report
ANL/MCS-TM-242, Mathematics and Computer Science Division, Argonne
National Laboratory, 2000. See http://www.mcs.anl.gov/tao.

C. Bischof, M. Biicker, and P. Hovland. On combining computational dif-
ferentiation and toolkits for parallel scientific computing. Technical Report
ANL/MCS-P797-0200, Mathematics and Computer Science Division, Argonne
National Laboratory, 2000. To appear in Proceedings of EuroPar 2000.

C. Bischof, A. Carle, P. Khademi, and A. Mauer. ADIFOR 2.0: Automatic
differentiation of Fortran 77 programs. IEEE Computational Science & Engi-
neering, 3(3):18-32, 1996.

C. Bischof and A. Griewank. Tools for the automatic differentiation of com-
puter programs. In ICIAM/GAMM 95: Issue 1: Numerical Analysis, Scientific

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Using Automatic Differentiation with Object-Oriented Toolkits 15

Computing, Computer Science, pages 267-272, 1996. Special Issue of Zeitschrift
fiir Angewandte Mathematik und Mechanik (ZAMM).

C. Bischof, P. Hovland, and P.-T. Wu. Using ADIFOR and ADIC to pro-
vide a Jacobian for the SNES component of PETSc. Technical Memorandum
ANL/MCS-TM-233, Argonne National Laboratory, 1997.

C. Bischof, L. Roh, and A. Mauer. ADIC — An extensible automatic differen-
tiation tool for ANSI-C. Software—Practice and Ezperience, 27(12):1427-1456,
1997.

G. D. Byrne and A. C. Hindmarsh. PVODE, an ODE solver for parallel com-
puters. Int. J. High Perf. Comput. Appl., 13:354-365, 1999.

M. C. Ferris, M. Mesnier, and J. J. Moré. NEOS and Condor: Solving optimiza-
tion problems over the Internet. Preprint ANL/MCS-P708-0398, Mathematics
and Computer Science Division, Argonne National Laboratory, Argonne, IL,
1998.

P. Fischer. Projection techniques for iterative solution of Az = b with successive
right-hand sides. Comput. Methods Appl. Mech. Engng., 163:193—-204, 1998.
M. Gertz, 2000. Personal communication.

D. Goldfarb and P. L. Toint. Optimal estimation of Jacobian and Hessian ma-
trices that arise in finite difference calculations. Mathematics of Computation,
43:69-88, 1984.

A. Griewank. On automatic differentiation. In Mathematical Programming: Re-
cent Developments and Applications, pages 83-108, Amsterdam, 1989. Kluwer
Academic Publishers.

A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM, Philadelphia, 2000.

W. D. Gropp, D. E. Keyes, L. C. Mclnnes, and M. D. Tidriri. Globalized
Newton-Krylov-Schwarz algorithms and software for parallel implicit CFD.
Technical Report 98-24, ICASE, Aug. 1998. To appear in Int. Journal on
Supercomputing Applications.

P. Hovland, B. Norris, L. Roh, and B. Smith. Developing a derivative-enhanced
object-oriented toolkit for scientific computations. In Proceedings of the STAM
Workshop on Object Oriented Methods for Inter-operable Scientific and Engi-
neering Computing, pages 129-137. STAM, October 1998.

P. D. Hovland and L. C. McInnes. Parallel simulation of compressible flow using
automatic differentiation and PETSc. Technical Report ANL/MCS-P796-0200,
Mathematics and Computer Science Division, Argonne National Laboratory,
2000. To appear in a special issue of Parallel Computing on “Parallel Computing
in Aerospace”.

S. L. Lee, A. C. Hindmarsh, and P. N. Brown. User documentation for Sen-
sPVODE, a variant of PVODE for sensitivity analysis. Technical Report
UCRL-MA-140211, Lawrence Livermore National Laboratory, 2000.

S. L. Lee and P. D. Hovland. Sensitivity analysis using parallel ODE solvers
and automatic differentiation in C: SensPVODE and ADIC. Technical Report
ANL/MCS-P818-0500, Mathematics and Computer Science Division, Argonne
National Laboratory, 2000.

S. Li and L. Petzold. Design of new DASPK for sensitivity analysis. Technical
report, University of California at Santa Barbara, 1999.

D. P. O’Leary. The block conjugated gradient algorithm and related methods.
Linear Algebra Appl., 29:293-322, 1980.

